Sunday, February 27, 2011

SHISA..BOLEH KAH MENGGANTI bahaya ROKOK..?

What is Shisha?
 
... Produ...Shishas a...Home    /...Smoking S...


Shisha refers to the flavoured tobacco used in the smoking process using a hookah, also commonly known as ‘hubble bubble’ and ‘narghile’. It is believed to have originated in Turkey over 500 years ago while others claim it came from Syria and India.


The tobacco is soaked in fruits shavings such as apples, grapes and strawberries. A hookah consists of a base, pipe, bowl and hose or a mouthpiece. Tobacco is placed in the bowl, which is at the top of the pipe structure. An aluminium foil covers the bowl and small charcoal pieces are then placed on the foil, which is punctured using a pin to gently heat the tobacco. When smoked using the hose, smooth, sweet-smelling vapour is filtered through the base containing water. It also comes in floral flavours such as coconut, vanilla and rose.

Is Shisha harmful? While many may argue that Shisha smoking is not harmful, medical experts say otherwise as tobacco product in any form contains nicotine and nicotine is addictive. Tobacco products are dangerous as it contains chemicals which are toxic and carcinogenic.

The common belief is that smoke is filtered by the water when in actual fact, nicotine is not water-soluble. The water filter is a gimmick hence the smoke is inhaled by a smoker.

Reuters reported last week that the World Health Organisation (WHO) announced that a single session of smoking Shisha yields a nicotine intake equivalent to more than one pack of cigarettes.

It is also reported that Shisha smoke retained all the carcinogens of cigarette smoke while adding more carbon monoxide and a separate set of carcinogens from the use of burning coals to keep the nicotine flowing, coupled with the risk of infection with tuberculosis or hepatitis from shared mouthpieces.

Tuesday, February 22, 2011

KENALI PERKEMBANGAN BIOTEKNOLOGI MAKANAN DUNIA

ABSTRACT


Modern biotechnology has been viewed by many scientists and observers as the frontier of the 21st century revolution. Biotechnology has been identified as one of the five core technologies that will accelerate Malaysia’s transformation into a highly industrialized nation by 2020. Under the 8th Malaysian Plan, the government has allocated an amount of RM100 million for research and development in the biotechnology sector focusing on agriculture, health, environmental management and energy. Although biotechnology has huge potential in many sectors but it has been the object of an intense and divisive debate among the scientists, industries, governmental bodies involved in biotechnology regulation, NGOs and the public in advanced countries. Whether they like it or not, the Malaysian public will also be facing the same dilemma whether to accept and use biotechnology products or vice versa. Public awareness, perception and attitude towards biotechnology and products are important determinants of public support and acceptance. This paper will try to identify several biotechnology issues that may serve as challengers to the Malaysian public acceptance.

PENDAHULUAN

Ramai para saintis dan pemerhati meramalkan bahawa abad ke 21merupakan era bioteknologi (Cantor 2000, Polkinghorne 2000). Bioteknologi moden merupakan teknologi canggih yang telah membolehkan para saintismenerokai banyak peluang baru dalam pelbagai bidang seperti pertanian, makanan, perubatan dan rawatan sisa. Kerajaan Malaysia telah mengenal pasti bioteknologi sebagai salah satu daripada lima teknologi utama bagi mentransformasikan negara ini menjadi sebuah negara industri menjelang tahun 2020.Aktiviti penyelidikan yang berkait dengan bioteknologi telah dikategorikan kepada tujuh sektor: bioteknologi tumbuhan, makanan, biologi molekul, perubatan, bio-farmasi dan bioteknologi industri/persekitaran (BIOTEK 2000).

Kesemua aktiviti bioteknologi diMalaysia masih di peringkat makmal kecuali betik yang telah diubahsuai secara genetik supaya lambat masak, telah pun dipohon oleh MARDI untuk ujikaji di peringkat ladang terkawal. Sama ada disukai atau tidak, dalam sedikit masa lagi, banyak produk bioteknologi akan berada di pasaran negara ini. Selain daripada kemungkinan penghasilannya oleh pengusaha tempatan padamasa akan datang, produk bioteknologi daripada luar negara seperti makanan dan ubat-ubatan akan turut membanjiri pasaran. Pada masa ini, produk bioteknologi yang telah diluluskan oleh ‘Genetic Modification Advisory Committee’ untuk diimpot adalah kacang soya (Low 2000).

Di arena antarabangsa, perkembangan bioteknologi yang begitu mendadak dalam sepuluh tahun kebelakangan ini telah menyebabkan berlakunya perdebatan yang sengit dan berbelah-bagi antara pelbagai pihak  (Reichert 2000,Demain 2000). Mengikut Sagar et al. (2000), faktor utama yang telah menimbulkan kontroversi tersebut adalah pengabaian keperluan, kepentingan dan kebimbangan pemegang taruhan utama – masyarakat awam atau pengguna. Daripada pengalaman negara-negara maju terutamanya di Eropah, sikap masyarakat awam dan badan bukan kerajaan (NGOs) telah memberi kesan yang besar kepada polisi, peraturan dan pengkomersilan produk bioteknologi.

Banyak kajian mengenai persepsi masyarakat awam telah dijalankan di negara-negara Barat tetapimasih kurang di negaramembangun. Kertas kerja ini akan cuba mengenal pasti faktor-faktor utama yangmenentukan penerimaan  produk bioteknologi berdasarkan kajian-kajian lampau dan cuba untukmembuat model berstruktur.

FAKTOR-FAKTOR YANG MEMPENGARUHI PENERIMAAN BIOTEKNOLOGI MODEN

Penerimaan masyarakat umum terhadap isu-isu yang kompleks seperti bioteknologi dipengaruhi oleh banyak faktor yang saling berkait.MenurutAerni (1999), penerimaan masyarakat boleh difahami melalui gabungan sikap individu mengenai sesuatu isu politik seperti yang berasal daripada inovasi teknologi. Sementara sikap individu terhadap teknologi baru bergantung kepada persepsinya terhadap bahaya dan faedah teknologi tersebut, nilai-nilai murni yang menjadi pegangan atau panduan hidupnya dan kepercayaan terhadap institusi yang mewakili teknologi tersebut. Kajian-kajian lain juga telah mendapati bahawa kebimbangan utama masyarakat terhadap bioteknologi adalah dipengaruhi oleh faktor etika, nilai-nilaimurni dan keselamatan (Optima Research Consultants 1994, Eisendel 1997). Sementara kajian Hoban (1996)
pula mendapati bahawa faktor utama yang mempengaruhi penerimaan bioteknologi oleh orang ramai diAmerika Syarikat adalah aras pengetahuan, kesedaran mengenai faedah, kepercayaan dan keyakinan. Gaskel et al. (2000, 2003) telahmenggunakan tiga faktor sebagai penentu sikapmasyarakat Eropah: persepsi terhadap faedah, bahaya dan penerimaan dari segi moral.

Penerimaan masyarakat terhadap pelbagai aplikasi bioteknologi

Kajian-kajianmengenai penerimaanmasyarakat terhadap bioteknologi diEropah (Gaskell et al. 2000,Gaskel et al. 2003), Jepun (Chen Ng et al. 2000) dan Kanada (Eisendel, 1997) menunjukkan bahawa sokongan atau tentangan kepada bioteknologi adalah berdasarkan aplikasi teknologi tersebut, bukan kerana teknologi itu sendiri.

Di Eropah, beberapa survei yang telah di jalankan pada tahun 1996, 1999 dan 2002 (Gaskel et al. 2000,Gaskel et al. 2003), diKanada (Eisendel 1997) dan di Jepun (Chen Ng et al. 2000)menunjukkan sokongan masyarakat awam yang paling tinggi adalah melibatkan aplikasi bioteknologi untuk penjagaan kesihatan seperti ujian genetik dan penghasilan ubat-ubatan atau vaksin  berbanding.Walau bagaimanapun aplikasi bioteknologi yang berkaitan dengan penghasilan organ manusia dalam haiwan (xenotransplant) dianggap bermasaaalah di Eropah, Kanada dan Jepun. Aplikasi bioteknologi dalam penghasilan makanan tidak disokong oleh masyarakat Eropah dan kurang mendapat sokongan di Kanada dan Jepun. Tanaman terubahsuai secara genetik supaya rintang terhadap serangga juga kurangmendapat sokongan di Eropah dan Jepun.

Penerimaan masyarakat terhadap sesuatu aplikasi bioteknologi adalahberkait rapat dengan beberapa faktor utama: faedah, risiko dan penerimaan dari segimoral aplikasi tersebut di samping beberapa faktor lain seperti kepercayaan terhadap institusi yang berkepentingan, pengetahuan dan kesedaran, pengaruh latar belakang, optimisme tehadap teknologi dan yang terlibat dalam bioteknologi (‘engaged’).

Persepsi mengenai faedah dan bahaya bioteknologi


Beberapa kajian lepas menunjukkan bahawa sokongan masyarakat terhadap sesuatu aplikasi bioteknologi akan bertambah sekiranya terdapat faedah yang nyata kepada mereka, masyarakat atau alam sekitar. Contoh yang nyata adalah sokongan masyarakat yang tinggi terhadap aplikasi bioteknologi berkaitan dengan penjagaan kesihatan seperti untuk menghasilkan ubat-ubatan atau vaksin dan ujian genetik di Eropah, Kanada dan Jepun ( Gaskell et al. 2000,Gaskel et al. 2003, ChenNg et al. 2000, Eisendel, 1997). Pengklonan sel atau tisu manusia bagi tujuan perubatan juga telah mendapat sokongan di Eropah walaupun aplikasi ini juga dilihat sebagai mempunyai risiko (Gaskel et al. 2003).

Persepsi masyarakat mengenai faedah bioteknologi berkait rapat dengan risikonya.Menurut Gaskel et al. (2000), ‘faedah’ adalahmerupakan syarat awal bagi mendapat sokongan. Beliau dan rakan-rakannya telah mengenal pasti apabila persepsi mengenai faedah sesuatu aplikasi bioteknologi berkurang, persepsimengenai risiko akanmeningkat sementara penerimaan dari segimoral pula akan menurun.

Penerimaan dari segi moral

Kajian Eisendel (1997, 2000) dan ConcertedAction of theEuropean Commission (1997) mendapati bahawa di antara tiga pembolehubah utama: faedah, risiko dan penerimaan dari segi moral, faktor yang ketiga merupakan peramal paling kuat bagi sokongan ke atas bioteknologi. Seseorang individu sanggupmenerima risiko sekiranya produk bioteknologi itu berfaedah dan diterima dari segi moralnya.Gaskel et al. (2000) berpendapat bahawa dalamsurvei di Eropah pada tahaun 1996 dan 1999, penerimaan dari segi moral merupakan ‘veto’ kepada penerimaan sesuatu aplikasi bioteknologi. Contohnya pengklonan sel-sel manusia disokong walaupun dilihat mempunyai risiko kerana ia diterima dari segimoral disamping berfaedah. Sementara pengklonan haiwan tidak disokong kerana tidak diterima darisegi moral di samping dianggap tidak berfaedah dan mempunyai risiko.

Keboleh..percayaan terhadap institusi yang berkepentingan


Salah satu daripada tema yang baru muncul dalam penyelidikan persepsi risiko adalah pentingnya ‘kepercayaan’ (Kamaldeen&Powell 2000). Persepsimengenai risiko bukan hanya melibatkan persepsi mengenai bahaya yang berkait dengan teknologi tetapi merangkumi tindakan yang diambil oleh pengguna teknologi dan badan yangmengawal teknologi tersebut (CAST 1995). Beberapa survei di Amerika Utara dan United Kingdom mendapati bahawa keyakinan terhadap peraturan kerajaan dan industri yang berkait dengan bioteknologi pertanianmerupakan peramal paling kuat bagi sokongan pengguna (Dittus&Hilllers 1993). Pengguna yang lebih yakin bahawa produk bioteknologi pertanian telah dikawal dengan memuaskan akan turut mempunyai persepsi bahawa produk tersebut lebih bermanafaat. Keyakinan masyarakat awam yang lebih tinggi terhadap badan pengawalan diAmerika Syarikat berkait rapat dengan sikap mereka yang lebih positif terhadap bioteknologi berbanding dengan Eropah, di mana keyakinan terhadap badan pengawalan yang lebih rendah (Eisendel 1997, ConcertedAction of theEuropean Commission 1997). Pengetahuan, kesedaran dan penglibatan Mengikut teori pembuat keputusan (Kelley 1995), orang ramai hanya akan membentuk sikap terhadap sesutu teknologi setelah memperolehi maklumat yang berkaitan. Jadi adalah penting untuk menilai tahap pengetahuan dan kesedaran masyarakat terhadap bioteknologi. Beberapa penyelidikmendapati bahawa masyarakat akan lebih menyokong bioteknologi apabila mempunyai lebih pengetahuan (Allumet al. 2002, Gaskell et al. 2000), sementara penyelidik lain mencadangkan kesan yang berlawanan (Barling et al 1999).

Beberapa penyelidikmendapati bahawa penerimaan bioteknologi olehmasyarakat tidak berkait langsung dengan kesedaran dan pendidikan (Freweret al. 1997, Powell 1998,Kelley 1995). Responden berupaya membuat pengadilan betapa bermanafaat atau berisikonya bioteknologi tanpa mengira tahap kesedaran dan pendidikannya. Powell (1998) mencadangkan bahawa mereka yang berpendidikan lebih tinggi mungkin lebih berupaya menilai risiko dan faedah bioteknologi dengan lebih kritikal.

Gaskel et al (2003) lebih suka menggunakan konsep ‘penglibatan’ (engagement), di mana tahap kesedaran dan pengetahuan responden digabungkan dengan tahap penglibatan tingkah lakumereka dalammemahami bioteknologi.Hasilnya, beliau mendapati bahawa masyarakat awam yang lebih ‘terlibat’ dalam bioteknologi akan menyokongnya walaupun mereka masih mengakui kehadiran risiko.

Pengaruh latar belakang (demografi)


Ciri-ciri demografi telah diketahui ramai dalammempengaruhi sikap dan nilai. MengikutKelley(1995), ciri umur dan jantinamesti diambil kira keranamengikut beberapa penyelidik, proses penemuan saintifik yang berterusan sering menjadikan mereka yang lebih tua ketinggalan (mungkin kerana pengetahuan saintifik hanya diperolehi semasa belajar dan tidak diteruskan selepas bekerja). Sementara lelaki dan perempuan sering berbeza pendapat dalam isu-isu yang berkait dengan Sains dan Teknologi.Pekerjaan dan agama seseorang juga adalah ciri yang sering mempengaruhi pendapat sosial dan politik mengenai pelbagai isu (Kelley1995). Konflik di antara sains dan agama sering berlaku di mata masyarakat. Kajian Gaskel et al (2003)mendapati bahawa pemboleubah seperti umur, jantina, tempat tinggal (bandar/luar bandar) dan pekerjaan didapati mempengaruhi tahap  ‘pengibatan’ dan sokongan masyarakat awam Eropah terhadap bioteknologi. Sementara diMalaysia, selain daripada ciri-ciri demografi yang telah dikaji oleh penyelidik tadi, ciri bangsa juga akan dikaji.

 Faktor-faktor lain

Kajian terkini Gaskel et al (2003) mendapati beberapa faktor lain yang turut menyumbang terhadap sokongan masyarakat Eropah terhadap bioteknologiadalah optimisme terhadap teknologi secara keseluruhan (9 jenis teknologi termasuk bioteknologi) dan orientasi nilai masyarakat.

Pembinaan model berstruktur
Berdasarkan faktor-faktor yang telah dikenal pasti tadi, satumodel berstruktur yang merangkumi faktor-faktor yang berkemungkinan menyumbang kepada sikapmasyarakat terhadap bioteknologi telah dibina (Rajah 1).Model ini dibina berdasarkan konsep sebab dan akibat.

1. Sebab

Di sebelah kiri sekali adalah faktor-faktor penyebab yang terdiri daripada pembolehubah latar belakang responden dan jenis aplikasi bioteknologi yang dianggap stabil, yang boleh mempengaruhi pembolehubah penyebab perantara dan juga sikap terhadap bioteknologi.

2. Penyebab perantara

Faktor penyebab perantara terdiri daripada faktor-faktor yang berkemungkinan mempengaruhi sikap terhadap bioteknologi. Faktor-faktor perantara ini juga berkemungkinan boleh dipengaruhi oleh faktor latarbelakang. Contohnya, tahap pengetahuan mungkin boleh dipengaruhi oleh tahap pendidikan, pekerjaan,
jantina, umur dan lain-lain.

Antara faktor perantara itu sendiri berkemungkinan boleh saling mempengaruhi antara satu sama lain. Contohnya, tahap pengetahuan dan kepercayaan terhadap pengeluar boleh mempengaruhi persepsi mengenai faedah, bahaya dan penerimaan dari segi moral sesuatu aplikasi bioteknologi.

3. Sikap terhadap bioteknologi

Sikap responden terhadap bioteknologi akan di bahagikan secara umum kepada dua kumpulan: penyokong dan penentang. Namun akan terdapat beberapavariasi penyokong seperti golongan responden yang menganggap bioteknologi sebagai merbahaya tetapi masih menyokong dan lain-lain lagi.


 KESIMPULAN


Penerimaanmasyarakat terhadap isu yang kompleks seperti bioteknologi harus dilihat daripada pelbagai sudut atau dimensi. Faktor-faktor utama yang mempengaruhi sikap masyarakat terhadap bioteknologi boleh dikategorikan kepada dua kumpulan:

i. persepsi khususmengenai faedah, bahaya dan isu moral bioteknologi dan;

ii. sikap umum seperti optimisme terhadap teknologi, pengetahuan dan

kesedaran terhadap bioteknologi, penglibatan dalam isu-isu bioteknologi, orientasi nilai, kepercayaan terhadap institusi yang berkepentingan dan faktor latar belakang. Walau bagaimanapun untukmengenal pasti faktor-faktor sebenar yang mempengaruhi sikap masyarakatMalaysia terhadap bioteknologi, satu kajian survei yang merangkumi aspek-aspek yang telah dinyatakan dalam model haruslah dilakukan ke atasmasyarakat diMalaysia sendiri.

RUJUKAN

1. Aerni, P. 1999. Public acceptance of genetically engineered food in

developing countries: the case of transgenic rice in the Philippines.

AgBiotechNet 1, November.ABN031

2. Alum, N.C., Boy, D.& Bauer,M.W. 2002. European regions and the

knowledge deficit model. Dlm Bauer,M. & Gaskell, G. (pnyt).

Biotechnology: themaking of a global controversy. CambridgeUniversity

Press, Cambridge.

3. Barling, D, De Vriend,H., Cornelese,J.A., Ekstrand,B., Hecker, E.F.F.,

Howlet,J., Jensen, J.H., Lang, T.,Mayer, S., Staer.K.B.,&Top,R. 1999.The

social aspects of food biotechnology: a European view. Environmental

Toxicology and Pharmacology 7(2):85-93.

4. BIOTEK.BiotechnologyinMalaysia. http://www.biotek.gov.my. (12.8. 2002

5. Cantor, C.R. 2000. Biotechnology in the 21st century. TIBTECH 18 (1), 6-7.

6. Council for Agriculture Science and Technology (CAST). 1995. public

perceptions of agrichemicals. Task Force Report. January 1995.

7. Chen Ng,M.A., Takeda,C.,Wtanabe, T. &Macer,D. 2000.Attitudes of the

public and scientists to biotechnology in Japan at the start of 2000. Eubios

Journal of Asian and international Bioethics 10: 106-113.

8. Concerted action of the European Commission. 1997. Europe ambivalent

on biotechnology. Nature 387: 845-847.

The Benefits and Risks of Biotech Foods

Food Biotechnology


J.L. Tietyen and M.E. Garrison, Family and Consumer Sciences; R.T. Bessin, Department of Entomology; D.F. Hildebrand, Department of Agronomy

This publication is part of a series that seeks to provide science-based information about discoveries in agricultural biotechnology. The information in these publications comes from the Biotechnology Research and Education Initiative (BREI) committee, which is comprised of a multi-disciplinary team of research, extension, and teaching professionals from the College of Agriculture. The series is designed to help Kentuckians understand and assess the risks and benefits of agricultural biotechnology.

Some people use the term biotechnology to refer to the tools of genetic engineering that have been developed since 1973. But biology, technology, and human-directed genetic change have been a part of agriculture since the beginning of cultivated crops some 10,000 years ago. Biotechnology has, in a general sense, been used as a tool for food production since the first breeders decided to selectively plant or breed only the best kinds of corn or cows. Technology is a tool we use to achieve a goal, such as improved food quality.

Scientific advances through the years have relied on the development of new tools to improve health care, agricultural production, and environmental protection. Individuals, consumers, policymakers, and scientists must ultimately decide if the benefits of biotechnology are greater than the risks associated with this new approach. This publication provides information about biotechnology with examples of how these new tools of biology and agriculture are used in food production. It includes a perspective showing how biotechnology fits into the history and future of science and food. Its purpose is to educate consumers about food biotechnology so that they can make informed choices.

The technology tools used in biology have changed rapidly since scientists moved the first specific gene from one organism to another in 1973. This new era began in 1953 when scientists James Watson and Francis Crick determined the structure of DNA. DNA is the chemical language that determines the features and characteristics of all living organisms: plants, animals, and microorganisms. Once scientists understood how DNA was put together, they could determine which parts of the DNA (genes) are responsible for certain traits.

Genes determine traits by controlling the production of proteins, including enzymes. Proteins and enzymes are used by all living organisms to grow, metabolize energy, and become what their genetic code dictates. Each cell of an organism contains the entire genetic code needed to create the organism. The interaction of genetic makeup and environmental factors shapes the nature of all living things. When people eat a "healthy" diet, they are controlling environmental factors that will, within the limits of their genetic makeup, decrease their risk of developing a disease.

From Breeders to Gene Jockeys

Plant breeders have for many years used tools and techniques such as selective hybridization grafting and cell isolation to improve crop quality and yield. And these early agricultural scientists made great advances, producing juicy ears of corn instead of hard-kerneled corn, which must be ground into flour, and present-day kiwi fruits rather than the hard berry from which they were developed.

Scientists using the relatively new tools of biotechnology have been called "gene jockeys" because of the great degree of speed and control with which they can change the inherited traits of plants, animals, and microorganisms. Today scientists can identify the gene(s) responsible for specific characteristics, such as disease resistance or nutrient composition, and insert them into another organism. What once took decades now takes years and can be accomplished with greater accuracy.

One of the most striking differences between traditional breeding and the genetic engineering approach is that the source of genetic material need not come from the same species. This allows scientists to exchange genetic information between bacteria, plants, and animals (including humans). These new techniques have prompted considerable debate on the ethical and moral aspects of this branch of science. All living organisms share the same genetic language. In fact, you probably share about half of your genetic information with a tomato plant. And the genetic information from that tomato plant can function in a corn plant. New techniques even allow scientists to decide in which part of the plant tissue a trait should be expressed, such as the pulp versus the skin of an apple.

When considering the risks associated with these new tools of food production, consumers need to understand how these tools differ from traditional agricultural methods. With traditional breeding methods, for example, increased levels of naturally occurring toxins may result from cross breeding designed to improve a crop. Breeders spend years "back-crossing" to rid the new plant of the undesired feature while maintaining the benefits of the hybrid. There are also risks associated with the current standard use of chemicals to allow crops to tolerate insects, infections, and adverse weather conditions.

Plant Foods

When working with plant foods, scientists seek to improve foods for the benefit of consumers, producers, or the environment. Consumers may benefit from improved nutrition or food quality. Producers may be able to grow crops under adverse conditions, such as drought. Some genetically engineered plant foods require significantly fewer chemical applications during growth and therefore have less environmental impact.

Scientists use their current knowledge of plant biology to help them decide how to improve plant traits for foods. In the case of the slow-ripening Flavr Savr™ tomato introduced in 1994 by Calgene Inc., which was one of the first food plants produced using the tools of biotechnology, scientists knew that a type of protein called an enzyme causes tomatoes to soften as they ripen. When they isolated the gene responsible for the softening enzyme and inserted it backwards into the tomato's genetic code, the resulting tomato maintained good eating quality for a longer time than regular tomatoes. This technique allows better-tasting tomatoes to be grown and shipped to distant markets.

In 1986, a herbicide-resistant soybean was created using the tools of biotechnology. After several years of tests and studies, the Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) granted approval in 1994. The Environmental Protection Agency (EPA) granted approval in 1995, and the new soybeans were grown commercially in 1996. Given the widespread use of soybean products as food ingredients, it has been estimated that most U.S. food consumers in the year 2000 have eaten foods produced through genetic engineering.

In 1997, 18 crop applications were approved by the U.S. agencies responsible for regulating biotechnology. An estimated 35 percent of the 1999 U.S. corn and 55 percent of the soybean crop were grown from genetically modified seeds.

Animal Foods

The first FDA-approved application of biotechnology for production of food animals was to modify a microorganism to make a hormone needed for milk production in dairy cows. This genetically modified organism (GMO) is a bacteria that can produce large quantities of the hormone for injection into dairy cows. An estimated one-third of U.S. milk is produced using the GMO-produced hormone, which increases milk production by 10 to 25 percent. Another GMO is used to produce about 75 percent of U.S. cheese by providing a necessary enzyme formerly harvested from the stomach lining of cows.

In addition to the use of GMOs in animal food production, biotechnology can be used to create transgenic animals. But developments of this biotechnology application may be slow due to the generally greater difficulties in animal genetic engineering and to the social and ethical concerns of consumers about the animal food applications of biotechnology. Nevertheless, some genetically modified food animals are under consideration for approval and marketing. An example is a salmon that grows to a marketable size more rapidly than regular salmon. Most transgenic animal research is for medical applications, as in the case of the cloned sheep "Dolly," where scientists are investigating cystic fibrosis disease.

What Consumers Need to Know

Each day consumers decide whether the perceived benefit of an action is worth the risk associated with that action. If an individual perceives the benefit to be worth the risk, the activity is deemed to be "safe." In order to make responsible decisions about these issues, consumers, scientists, and government agencies need to be informed. Risk assessment studies about the impact of biotechnology have been and are currently being conducted to assess the impact of biotechnology, just as they are for any other new medical or agricultural technology.

How these foods are regulated

Foods produced with the new tools of biotechnology are required to meet the same requirements set forth by the FDA for all foods. The FDA has issued the following guidelines to ensure the safety of foods developed using biotechnology:

Genetically modified food products will be regulated just as traditionally produced foods are regulated.

The products will be judged on their food safety and nutrition characteristics, not by the methods used to produce them.

Any new ingredients will be regulated on the basis of the potential benefits and risks of including them in the food supply, just as traditional ingredients, like food additives, are regulated.

Special labeling for genetically modified foods is not required unless the potential for food allergy, nutrient composition, or product identity has been changed significantly. In the United States, consumers can purchase organic foods that, by definition, do not contain GMOs.

Other U.S. agencies charged with regulating the use of biotechnology are the EPA, which regulates substances with potential environmental impact, and the USDA. Some of the products of plant biotechnology have built-in pesticides, and the EPA is charged with regulation of these products. Several USDA agencies are involved, including the Animal and Plant Health Inspection Service, the Food Safety Inspection Service, the Agricultural Research Service, the Economic Research Service, and the Cooperative State Research, Education, and Extension Service. To learn more about the USDA's role in biotechnology, visit .

The benefits and risks of biotech foods

What benefits can consumers expect from food applications of biotechnology in the future? Consumers will have the choice of foods enhanced with extra nutrients, such as vitamin-enhanced rice. A higher-starch potato could be used to make lower-fat french fries and potato chips. The altered starch content results in potatoes that absorb less oil in the frying process. New vegetable oils have been produced that have significant health benefits to reduce the risk of cancer and heart disease. Biotechnology may someday yield peanuts with a lower potential for allergic response. Food crops with built-in insect, disease, and herbicide resistance can be produced using fewer chemicals. Ideas for new foods created through biotechnology will be identified and tested for many decades to come as we learn about the possibilities and limitations of this new tool.

What are the risks associated with the use of biotechnology for food production? There are two issues of primary concern to food consumers: (1) the potential introduction of food allergens and (2) marker genes that would increase human resistance to antibiotics. The potential for food allergens in biotechnology products is monitored by the FDA. Each food is evaluated for its allergenic potential as part of the regulatory process and labeling is required if a known allergen is transferred to a food source not normally associated with that allergen. Presently, no food products are on the U.S. market with this designation. In fact, some products have been pulled from the review process precisely because of this concern. There is no current scientific evidence of increased antibiotic resistance as a result of genetically modified foods. (This would be more likely to result from overuse of prescription antibiotics.) However, because of public concern, crops are now being developed without such antibiotic-resistant genes.

Additionally, people are concerned about the environment and the introduction of "super" weeds or plants that are herbicide resistant or harmful to insects. Scientists are collecting data about both of these issues as part of their work to carefully assess the risks associated with the use of biotechnology. The EPA monitors the environmental impact of biotechnology, including its use for food production.

What Consumers Think about Biotechnology and Foods

Both the public and scientific communities are evaluating their stance on the use of biotechnology for food production. Most consumers favor the use of biotechnology when it allows producers to decrease their use of agricultural chemicals. Biotechnology is less of a concern to U.S. and Kentucky food consumers than other food-related risks such as fat, cholesterol, germs, or pesticides. Ultimately, consumer desires will decide the fate of foods produced with biotechnology through the effect of demand on supply and their demand for accountability from U.S. public agencies. For consumers to responsibly participate in these decisions, they must be well informed about the potential benefits and risks associated with biotechnology.

Glossary

Biotechnology: applied biological science.

DNA (DeoxyriboNucleic Acid): the chemical basis for the genetic code, DNA is a long strand of four basic chemical units; small segments of DNA code for genes, which control traits.

Enzyme: a protein that helps biological reactions occur; for example, enzymes help the body convert food into energy.

Gene: a small part of a DNA strand that contains information about how an organism will develop or which traits the organism will inherit; for example, white versus yellow corn.

Genetic code: the DNA sequence that provides the "blueprint" for cells and organisms.

Genetic engineering: in a broad sense, all genetic improvement procedures including plant and animal breeding; more specifically, genetic improvement using modern techniques to work with DNA.

Protein: the primary product of genetic code, necessary for life processes in all plants and animals.

Trait: a characteristic that distinguishes one plant or animal from another; for example, white versus yellow corn.

Transgenic: a plant or animal with an altered genetic makeup resulting from genetic engineering.

For more information about biotechnology, visit the University of Kentucky Biotechnology and Research Education Initiative Web page at . This resource contains facts and information on various aspects of biotechnology and links to other resources.

References

American Dietetic Association. Position of the American Dietetic Association: Biotechnology and the future of food. Accessed April 2000.

Bessin, R.T., et al. GMOs: A consumer perspective. NCB GMO Symposium. North Central Branch, Entomological Society of America Meeting, Minneapolis, MN. March 2000.

Betsch, D.F. Principles of biotechnology. In: Webber, G., ed. Iowa State University Office of Biotechnology, June 1998. Available at: .

Biotech Basics. Brief biotech timeline. . Accessed June 2000.

Henkel, J. Genetic engineering: Fast forwarding to future foods. FDA Consumer, April 1995. Available at: .

International Food Information Council. Food Biotechnology Resources, May 2000. Available at: .

Lemaux, P.G. From food biotechnology to GMOs: The role of genetics in food production. . Accessed June 2000.

Peterson, R.K.D. Public perceptions of agricultural biotechnology and pesticides: Recent understandings and implications for risk communication. American Entomologist, Spring 2000.

Tietyen, J.L., McGough, S., and Kurzynske, J.S. Consumer perceptions of food-related health risks. Society for Nutrition Education Annual Meeting, Charleston, S.C. July 2000.

Biotechnology in Food

The Future of Biotechnology in Food Processing



By the year 2000 the worldwide market for biotechnology-derived food and agricultural products could be valued at tens to hundreds of billions of dollars. The results of the rapid pace of biological research since 1970 indicate that we are only scratching the surface of the potential.


We define biotechnology broadly, as the use of biological systems, including micro-organisms or components produced by micro-organisms, in industrial processes. Micro-organisms have been used in food preparation for centuries to preserve and transform raw agricultural commodities into edible products for human consumption.

Forecasts on Size of Worldwide Market for Biotechnology Agriculture and Food Processing Products




Source                                                                     Year Millions                               Dollars

Arthur D. Little                                                        1990                                           2,000–4,000

Business Communications Co.                                 1990                                             430
Policy Research Corp.                                            2000                                         50,000–100,000
Predicasts, Inc.                                                       1985                                           6,200
                                                                              1995                                        101,000
Strategic, Inc.                                                         1990                                            4,500
                                                                              2000                                            9,500
T.A. Sheets & Company                                        2000                                          21,300


Forecasts on Size of Worldwide Market for Biotechnology Agriculture and Food Processing Products

Fermentation of milk, meat and fish, fruits and vegetables, and cereal grains by micro-organisms creates products which contribute to the flavor, texture and keeping quality of food, suppress the growth of disease and spoilage organisms, and enhance the nutritional quality of the final product. Fermentation is the use of enzymes produced by micro-organisms to change an organic compound into other substances such as carbon dioxide and alcohol. Fermentation technology also has been used for the microbial production of enzymes, amino acids, vitamins, and a host of other components used as food ingredients, nutritive supplements, and food processing aids.

In essence, the food processing industry was practicing biotechnology long before it was recognized as a distinct and revolutionary scientific discipline.

One facet of biotechnology of particular application in the food industry is genetic engineering. This technique is used in the laboratory to alter the genetic material of living cells so that they can produce more or different chemicals or perform new functions. It will have a profound impact on agriculture and traditional food processing because of the tremendous potential for genetic improvement of plants, animals and micro-organisms.

The interface between biotechnology and food processing was explored in October 1985 at an International Symposium, Biotechnology in the Food Processing Industry, cosponsored by the Department of Food Science and Nutrition and the Agricultural Experiment Station at the University of Minnesota, and the Cooperative State Research Service of the U.S. Department of Agriculture (USDA).

Now let us focus on the manipulation of micro-organisms in the production of food additives and processing aids, and their role in the development of value-added technology, improved processing methods, and more efficient use of food processing wastes. Many examples are from the symposium proceedings.

Food Additives and Processing Aids

Some of the products, including enzymes, amino acids, vitamins, organic acids, and certain complex carbohydrates and flavoring agents used in food formulation are currently produced by microbial fermentation. In the future, biotechnology will be used to design micro-organisms capable of producing these high-value additives more efficiently arid cost effectively. In addition, advances in large-scale fermentation systems and bioprocess design will optimize recovery arid downstream processing of microbial products. All of these will have a profound impact on the food industry.

Biotechnology Products for the Food Industry



Product Use Enzymes amylase High fructose corn syrup isomerase rennet Cheesemaking

proteases Meat tenderizer pullulanase "Lite" beer Organic acids citric acid Acidulant benzoic, probionic acid Food preservative Amino acids methionine, lysine,trypthopan Nutritional supplement aspartic acid, phenylalanine Aspartame production Vitamins Nutritional supplement Low calorie products aspartame, thaumatin, monellin Non-nutritive sweeteners modified fatty acids and triglycerides Food additives and cooking oil Microbial polysaccharides Stabilizers, thickeners, gelling agents Flavors and pigments Flavoring and coloring agents

Single cell protein Animal and human food supplement

Some food ingredients are extracted from plant material or synthesized chemically (i.e., gums, flavors, pigments). In the future it will be possible to transfer the genetic ability of the plant to synthesize certain flavors, pigments or complex carbohydrates into food-grade micro-organisms. This transfer will allow commercial production of these high-value food additives via fermentation processes.


Enzymes. The food processing industry is currently the largest consumer of industrial enzymes, making up about 40 percent of a $400 million market. An enzyme is a complex protein produced by living cells that helps a chemical reaction along without itself being changed. Enzymes are added during food processing to control texture or appearance, enhance nutritive value, and generate desirable flavors and aromas.

Future application of biotechnology will involve enzyme engineering—changing the primary structure of an enzyme. Such changes may alter target specificity, acidic condition, or thermostability. Enzyme engineering can be used to "tailor-make" enzymes to function best in commercial food processing systems.

Immobilized enzyme technologies have been developed for the production of high fructose corn syrup, and will have broad application in processing other foods. Immobilization of an enzyme increases its stability, allows easy separation of the product from the enzyme, and so facilitates its recycling.

In the future, immobilized enzymes will replace batch fermentations for producing amino acids, aspartic acid and tryptophan, and the non-nutritive sweetener, aspartame. Immobilization of rennet, the enzyme that coagulates milk during cheesemaking, or lactase, the enzyme which cleaves lactose to glucose and galactose, could speed the development of innovative continuous processing methods in the dairy fermentation industry.

Low Calorie Foods. The current trend toward a more health- and nutrition-conscious lifestyle has encouraged the development of low calorie foods. The non-nutritive sweetener market has been predicted to reach $500 million by the year 2000.

A new class of compounds called taste-active proteins functions as sweeteners and flavor modifiers and includes compounds such as aspartame, thaumatin, and monellin. The gene which codes for the protein thaumatin has been isolated and characterized. Transfer of this gene into bacteria would allow the production of thaumatin via fermentation. If engineered into plants, new and unique foods could be developed.

Another application of biotechnology in low calorie food production is the development of low calorie fats and oils. Genetically inducing the production of shorter chain fatty acids in soybean or rapeseed would speed the development of a low calorie vegetable oil. The market for this oil could reach $2 billion a year by the end of the next decade.

Natural Food Products. Another consumer trend is the demand for natural food products. Natural flavors and colors elicit a higher price than their synthetic counterparts, as the supply of these natural additives is highly dependent upon favorable environmental conditions for growing the plant and efficient and safe extraction procedures. Numerous strains of bacteria, yeast, and mold can produce flavors and colors of interest to the food processing industry. An understanding of the metabolic pathways and the specific proteins and enzymes responsible for the synthesis of these compounds will allow the future development of more consistent and cost-effective production methods.

Value-added Technology and Waste Management

A major concern in the food processing industry is the development of methods to convert inedible plant materials and waste materials into new value-added products. Each year the cheese industry generates billions of pounds of whey that must be disposed of. Ultrafiltration has provided the cheesemaker with a means of concentrating the protein component of whey into a value-added item with significant dollar value. Some solids, however, have a negative market value because it costs money to get rid of them.

A recently developed bioconversion system employing selected strains of yeast can convert these solids to ascorbic acid with a market value of about $10 per kilogram.

Certain strains of yeast can produce terpenes which impart a characteristic grape aroma and the odor of oils of interest in the wine and food industries. Because these strains use the lactose in whey as a sole carbon source, they could be used in fermentation systems to produce flavor components. The yeast biomass could be dried and used as single-cell protein supplements in animal feed.

Enzymatic treatment of food processing waste streams could produce materials readily metabolized by micro-organisms genetically engineered to produce antibiotics, hormones, or peptides of interest in the pharmaceutical or chemical industries. In the future, environmental and economic concerns will necessitate a reduction of food processing waste, better use of raw materials, and the processing of food residuals to new products that have value.

Rapid Detection Methods

Ensuring the safety of our food supply is an integral part of the food processing industry. Classical microbiological techniques for the enumeration and identification of disease agents and their toxins in foods are not always reliable and are often slow. Foods can already be in the marketplace before results are available. Biotechnology has been used to develop sensitive, reliable, and rapid detection methods to expedite this process.

One method involves DNA—deoxyribonucleic acid, the molecular basis of heredity in many organisms. Specific fragments of DNA from disease-causing micro-organisms that code for toxins or virulence factors have been used to create DNA probes which in hybridization analyses can detect those organisms in foods.

Commercial test kits for the detection of Salmonella are available and currrently being tested in field trials.

The identification of antigens by using monoclonal antibodies is another valuable tool in the biological monitoring of food. Monoclonal antibodies have been used to detect disease-causing micro-organisms, and they also help detect nonmicrobial components of food.

In the future, bioassays employing DNA probes and monoclonal antibodies will be developed for a host of food-borne disease agents and become a powerful diagnostic tool for the food processing industry



Modern Biotechnology in Food: Modern biotechnology and food quality


In Europe, a vast diversity of high quality foods provide the carbohydrates, fats, proteins, minerals and vitamins needed in the everyday diet of consumers. At the heart of food production is biotechnology. One aspect of biotechnology which has been used for centuries is the selective breeding of crop plants and farm animals to produce improved food. Another is fermentation, in use for millennia to produce fermented foods like cheese, bread, beer, sauerkraut and sausages.

The first use of gene technology two decades ago opened up the potential for many additional advances in both selective breeding and fermentation. Each specific step forward might be relatively small, but together they could add up to further improvements in the nutritional quality, appearance, flavour, convenience, cost and safety of foods.

Better raw materials ...

In improving raw food materials, many plant breeding programmes have been directed towards boosting yield or allowing more environmentally compatible agriculture by increasing the resistance of crops to viruses, pests or herbicides. Increasing yield has clear benefits in helping to feed the world's ever-increasing population and could provide cheaper food. Plants which are resistant to attack by insect pests and diseases would need fewer pesticide applications; resistant crops such as maize, tomatoes and potatoes are already being developed. Crops have also been produced with tolerance to modern, more environmentally compatible herbicides, with the aim of achieving optimal weed control with reduced levels of herbicide.

Today, there is increasing interest in improving the nutritional value, flavour and texture of raw materials. This could help encourage greater fruit and vegetable consumption in line with government guidelines on healthy nutrition.

A range of promising crop plants are being developed with:

•Improved nutritional value - Crops in development include soybeans with a higher protein content; potatoes with more nutritionally available starch and with an improved amino acid content; pulses such as beans which have been altered to produce essential amino acids; crops which produce beta-carotene, a precursor of vitamin A; and crop plants with a modified fatty acid profile. An example is a strain of oilseed rape which produces a special type of polyunsaturated fatty acid (the so-called w3-fatty acids). These have been linked to brain development and have potential in a range of speciality, clinical and infant foods.

•Better flavour - For example, types of peppers and melons with improved flavour are currently in field trials. Flavour can also be improved by enhancing the activity of plant enzymes which transform aroma precursors into flavouring compounds.

•Improved keeping properties with the aim of making transport of fresh produce easier, giving consumers access to nutritionally valuable whole foods and preventing decay, damage and loss of nutrients. Examples include the improved tomatoes now being sold in the US, and recently approved in the UK, which have been genetically altered to delay softening. Research is underway on making similar modifications to broccoli, celery, carrots, melon and raspberries. The shelf-life of some processed foods such as peanuts has also been improved by using raw materials with a modified fatty acid profile.

•Reduced levels of toxicants, allowing a wider range of plants to be used as food crops, such as the edible strain of sweet lupin which has been developed through conventional breeding techniques.

Improved food ingredients ...

Necessary changes to the key food ingredients, starches and oils, are usually made by processing. Biotechnology opens up the possibility of altering crop plants to produce exactly the type of ingredients needed:

•Starches- Plant breeders have introduced a bacterial gene into potato plants which increases the proportion of starch in the tubers whilst reducing their water content. This means that the potatoes absorb less fat during frying, giving low-fat chips. Sweeter potatoes have also been produced which have a higher sucrose content than traditional varieties.

•Oils- Both rapeseed and sunflower are being altered to produce more stable and nutritious oils, which contain linoleic acid instead of linolenic acid and have a lower saturated fat content. Rapeseed has also been modified to produce a high-temperature frying oil low in saturated fat.

Advances in processing and additives ...

Research underway at present aims to allow the production of better food raw materials by crop plants. However, some processing steps remain essential to bridge the gap between currently-available raw materials and the desired end-product.

Traditional biotechnology has played a major role in producing fermented foods - where desirable changes are produced by the action of micro-organisms or enzymes - of which over 3,500 different types exist around the world. In Europe and North America, bread, yoghurt and cheese are perhaps most familiar. In Africa, foods made from fermented starch crops like yams and cassava are more important, whereas in Asia, products derived from fermented soya beans or fish predominate.

Fermentation can make the food more nutritious, tastier or easier to digest, and it can enhance food safety.
It also helps to preserve food and to increase its shelf-life, reducing the need for additives. Genetically improved strains of microbes can make a major contribution to these desirable properties.

For many years, a wide range of additives, processing aids and supplements have been obtained from microbial sources by fermentation. Increasingly, modern biotechnology is being used here. Products include vitamins, citric acid, natural colourings, flavourings, gums and enzymes. Gums used as low-calorie thickening agents and low-calorie sweeteners from natural ingredients are also produced using modern biotechnology. Enzymes (see separate background paper) - the naturally-occurring catalysts responsible for literally all the biochemical processes of life - are used in applications such as bakery and cheese making to improve texture, appearance and nutritional value, and to generate desirable flavours and aromas.

A second area where biotechnology has advantages is in improving the processes by which food is produced. Here, it can be used to develop mild, highly specific processes using modified micro-organisms and purer, cheaper enzyme products. These can offer better productivity, cost-effectiveness and energy efficiency than existing processes. They can produce top-quality foods with a reduced need for additives such as flavourings, and can also reduce the environmental impact of food processing.

Specific areas of food processing where advances are being seen are:

•Bread-making, for which improved strains of yeast have been developed containing genes for production of other food processing aids, such as amylases, which give improved dough. Yeast can also be used to produce a range of enzymes for use in processes such as cheese production, where introducing a copy of a calf gene has given a strain of yeast which produces the enzyme, chymosin. Previously, this enzyme could only be obtained from the stomachs of calves.

•Fruit juice production, where juice yields from apples can be improved by adding pectinase enzymes. These are produced naturally by a strain of the mould Aspergillus. The rate at which the enzymes are made can be improved by transferring the gene for pectinase from one strain of the mould into a second strain with a higher capacity for enzyme production.

•Improved quality management and food safety, through a greater understanding of micro-organisms and enzymes in food production. A range of biological tools, such as monoclonal and polyclonal antibodies, will add to this impact through their use in a range of diagnostic tests aimed at enhancing the quality and safety of products and processes. These can potentially be used to monitor the presence of additives, toxins, pesticides, micro-organisms and antibiotics, and they will give quicker, more accurate detection than traditional laboratory processes.

Biotechnology - a definition

Biotechnology is any technique which uses living organisms or their components to make or modify products, to improve plants or animals or to develop micro-organisms for special uses.

Source: OECD

Gene technology - a definition

Gene technology includes any technique for the controlled modification or transfer of genes from one organisms to another to give a desired characteristic

Wednesday, February 9, 2011

Make 2011 Your Year to Quit SMOKING

2011: Your Year to Quit Smoking

As the New Year begins, determine to make 2011 the year that you quit smoking. Resources are available to help you quit for good this year.

Make 2011 Your Year to Quit

Quitting smoking is among the most common New Year's resolutions. The New Year is a symbol of renewal and can be a time to prepare for new beginnings. It is a time to set goals and make them public so that you can get support and encouragement from friends and family. If you are a smoker, determining to quit in 2011 may be the most important resolution you ever make.

Nicotine is the drug in tobacco products that makes them addictive. In fact, nicotine dependence is the most common form of addiction in the United States. Research suggests that nicotine is as addictive as heroin, cocaine, or alcohol. Smokers want to smoke because their bodies rely on nicotine. When the amount of nicotine in the body runs low, smokers experience a craving—a strong, almost uncontrollable urge to smoke.
Quitting smoking can be challenging and may require multiple attempts. People sometimes relapse because of stress and withdrawal symptoms (e.g., irritability, anxiety, difficulty concentrating). But you can quit. For some smokers, quitting is not as hard as they expected. For others, it is a major battle. But the bottom line is that more than 40 million smokers have successfully quit. In fact, today there are more former smokers than smokers.

Make 2011 your year to quit.

The Most Important New Year's Resolution You May Ever Make

Breaking free from nicotine dependence is not the only reason to quit smoking. Cigarette smoke contains more than 7,000 chemicals and chemical compounds, many of which are toxic or carcinogenic (i.e., cause cancer). Cigarette smoke can cause serious health problems, even death.  Fortunately, people who stop smoking can greatly reduce their risk for disease and premature death. And the younger you are when you quit, the better your chance for avoiding these problems. So don't wait!

Quitting smoking:

•lowers the risk for lung and other types of cancer.
•reduces the risk for coronary heart disease, stroke, and peripheral vascular disease.
•reduces respiratory symptoms, such as coughing, wheezing, and shortness of breath.
•reduces the risk of developing chronic obstructive pulmonary disease (COPD), one of the leading causes of death in the United States.
•reduces the risk for infertility among women during their reproductive years. Women who stop smoking during pregnancy also reduce their risk of having a low birth weight baby.

If you quit smoking, you will also help protect your children, family, and friends from exposure to secondhand smoke that can cause immediate harm to the nonsmokers who breathe it.

•Harm to Adults

When others are exposed to secondhand smoke from your cigarettes, platelets in their blood get sticky and may form clots, just like in a person who smokes. This exposure increases their risk for heart attack and death. Secondhand smoke can also cause lung cancer.

•Harm to Children

If babies and children are exposed to secondhand smoke from your cigarettes, they may suffer from bronchitis, pneumonia, and ear infections. Exposure may make them wheeze and cough more often. If they have asthma, breathing in secondhand smoke from cigarettes can trigger an attack that may be severe enough to send them to the hospital. Secondhand smoke also causes sudden infant death syndrome (SIDS).

There is no safe amount of secondhand exposure. Breathing even a little secondhand smoke can be dangerous. Quitting smoking will improve your health and protect others from exposure to secondhand smoke.

How to Quit

You can quit in 2011.

The most important thing is to try! Although no single approach works best for everyone, many effective quit methods are available. Talk to your doctor or health care provider about quitting, call 1-800-QUIT-NOW, or visit www.smokefree.gov for more information and support.

You can get ready by setting a quit date in the next few days or weeks, and changing your environment (e.g., get rid of ALL cigarettes and ashtrays in your home, car, and place of work and don't let people smoke in your presence). Also, think about your past attempts to quit. Think about what worked and what did not. And once you quit, don't smoke—NOT EVEN A PUFF!

Get support and encouragement. Studies have shown that you have a better chance of being successful if you have help. You can get support in many ways. For example, tell your family, friends, and coworkers that you are going to quit and want their support. Ask them not to smoke around you or leave cigarettes out where you can see them.

Talk to your health care provider (e.g., doctor, dentist, nurse, pharmacist, psychologist, or smoking cessation coach or counselor). Get individual, group, or telephone counseling. Counseling doubles your chances of success. The more help you have, the better your chances are of quitting. Counseling can help you identify and overcome situations that trigger the urge to smoke. Free programs are available at local hospitals and health centers. Call your local health department for information about programs in your area. Telephone counseling is also available free of charge across the United States at 1-800-QUIT-NOW.

Learn new skills and behaviors. Try to distract yourself from urges to smoke. Talk to someone, go for a walk, or get busy with a task. When you first try to quit, change your routine. Use a different route to work. Drink tea instead of coffee. Eat breakfast in a different place. Do something to reduce your stress. Take a hot bath, exercise, or read a book. Plan something enjoyable to do every day. Drink a lot of water and other fluids.

Talk to your doctor about medication. Medications can help you stop smoking and lessen the urge to smoke.

•Over-the-counter "nicotine replacement therapies," or NRTs, can help. These are medications that contain nicotine to help reduce your cravings and withdrawal symptoms so you can focus on changing the behavior and habits that trigger your urge to smoke. NRTs available without a doctor's prescription include nicotine lozenges, nicotine gum, and nicotine patches.

•You can also get a prescription from your doctor for NRTS such as nicotine inhalers and nasal sprays that act much like the over-the-counter NRTs.

•Other prescription medications like bupropion SR and varenicline tartrate do not contain nicotine and work in different ways to help reduce your urge to smoke. These medications are FDA-approved and proven to be effective in helping smokers to quit. Talk to your doctor or health care provider.

Counseling can be combined with over-the-counter or prescription medications. Counseling and medication are effective when used by themselves for treating tobacco dependence. However, the combination of counseling and medication is more effective than either alone.

Regardless of how you decide to quit, whether you use medicines, counseling, or simply stopping smoking now, the most important thing is to try and stick to it.

Support to Quit

For support to quit, call 1-800-QUIT-NOW (1-800-784-8669; TTY 1-800-332-8615). You can get free support and advice from experienced counselors, a personalized quit plan, self-help materials, the latest information about cessation medications, and more.

Online cessation services and resources are also available through the following Web sites:

•www.smokefree.gov provides free, accurate, evidence-based information and professional assistance to help support the immediate and long-term needs of people trying to quit smoking.

women.smokefree.gov provides free, accurate, evidence-based information and professional assistance to help support the immediate and long-term needs of women trying to quit smoking.

•Quit Tobacco: Make Everyone Proud is a U.S. Department of Defense-sponsored Web site for military personnel and their families.

For More Information

•Help for Smokers and Other Tobacco Users: Quit Smoking

(Easy-to-read guide issued by the U.S. Agency for Healthcare Research and Quality)
 
FOR MLAYSIAN SMOKER PLS CNT.. hamzah.ahmad@moh.gov.my

Wednesday, February 2, 2011

PERUBATAN & PERAWATAN ALTERNATIF

Assalamualaikum wbt

Gout kini merupakan satu penyakit yang semakin banyak menyerang rakyat Malaysia. Dikalangan rakan sekerja penyakit ini sudah menular dengan rancak dan paling ramai yang menghidapinya ialah kalangan lelaki berusia lebih 40an. Namun ada antara kes gout juga menyerang lelaki berusia awal 30an.Menurut NIH (National Institutes of Health in America), gout telah menyerang kira-kira 2.1 juta penduduk di Amerika dan kerap di hadapi oleh lelaki berusia antara 40 – 50. Ia jarang berlaku pada kanak-kanak-kanak dan remaja.Apa sebenarnya penyakit gout? Gout ialah satu penyakit yang diakibatkan oleh peningkatan asid urik di dalam darah. Apabila tahap asid urik dalam darah ini terus meningkat, sebahagian asid urik ini akan membentuk “kristal asid urik” pada bahagian sendi-sendi dan ini akan menyebabkan sendi ini mengalami sakit, sukar di bergerak, pembengkakan dan inflamasi. Gout selalunya menyerang sendi pada ibu jari kaki seperti gambar.Asid urik adalah satu bahan hasil pemecahan sel-sel tua yang mati (DNA dan RNA) yang berlaku di dalam hati. Asid urik juga dihasilkan apabila manusia mengambil makanan yang tinggi kandungan protinnya seperti daging. Protin akan diuraikan kepada asid amino dan sebahagian asid amino yang berlebihan akan diuraikan kepada asid urik. Dalam bahasa mudah, asid urik adalah hasil penguraian sel yang mati serta dari makanan yang diambil.

Kadar normal asid urik dalam darah meningkat apabila kanak-kanak meningkat remaja dan dewasa. Kadar kandungan asid urik pada lelaki dewasa ialah 3 – 7 mg/dl dan 2 – 6 bagi perempuan dewasa. Ujikaji di dalam makmal mendapati apabila kandungan asid urik di dalam larutan melebihi tahap 6.5 – 7.0 mg/dl, kristal asid urik mulai terbentuk. Bagi manusia, apabila tahap asid urik dalam darah melebihi 10 mg/dl, selalunya akan mengakibatkan serangan gout yang teruk. Sekiranya gout tidak dirawat, kristal asid urik akhirnya akan menghasilkan satu bahan yang keras disekitar sendi dipanggil tophi. Aras asid urik yang tinggi dalam darah ini juga seterusnya selain dari gout boleh mengakibatkan kidney stones (batu dalam buah pinggang) atau pelbagai masalah buah pinggang (kidney failure).

Dalam keadaan normal, asid urik dalam darah ini akan dikeluarkan daripada tubuh sebahagian besarnya melalui air kencing dan bakinya melalui ketulan najis. Masalah hanya akan timbul apabila asid urik dalam darah ini tidak dapat dikeluarkan dari tubuh. Apabila ini berlaku maka paras asid urik akan meningkat dan seterusnya mengakibatkan gout.

Apabila pesakit gout menemui doktor, apa yang akan dibuat oleh doktor ialah dengan memberikan ubat untuk menghilangkan kesan sakit (pain killer), mengurangkan pembengkakan dan mengurangkan paras asid urik dalam darah.

Bagi mengurangkan paras asid urik, selalunya doktor memberikan ubat Allopurinol (Lopurin, Zurinol, Zyloprim). Ubat ini berfungsi untuk mengurangkan kandungan asid urik dalam darah melalui kaedah “memperlahankan pengeluaran asid urik. Kemungkinan kesan sampingan ubat ini ialah gatal kulit, perut meragam dan kadang-kadang boleh juga menyebabkan kesan alergi pening dan sakit otot. Sebenarnya ubat allopurinol tidak menyembuhkan gout, ia hanya sekadar memperlahankan pengeluaran asid urik dari tubuh. Bagi saya penggunaan ubat jenis ini langsung tidak munasabah.

Selain allopurinol, ubat pain killer dan mengurangkan pembengkakan yang diberikan doktor sebenarnya memanglah kelihatan seperti sesuatu yang amat hebat keana ia memberikan kesan positif dalam jangka masa singkat selepas pengambilanya iaitu selepas beberapa jam namun sebenarnya pada pandangan saya ia adalah “racun” yang sebennarnya menambahkan masalah bagi pesakit gout. Ini kerana kebanyakan pain killer yang diberikan doktor, selain dari menghilangkan kesan sakit pesakit gout, ia sebenarnya merosakkan buah pinggang dan ini bukan lagi rahsia di kalangan doktor. Kadang-kadang terdapat kes perbalahan antara doktor kerana antara mereka ada yang tidak bersetuju kerana doktor tersebut memberikan pain killer dari jenama tertentu kepada pesakit gout. Begitulah, sesama mereka pun berbalah, mana yang betul? Sebenarnya dua-dua yang berbalah pada pandangan saya pun tidak betul kerana jikalau mengikut saya, pesakit gout tidak boleh sama sekali mengambil ubat pain killer dan ubat bengkak.

Ubat pain killer merosakkan buah pinggang dan apabila buah pinggang semakin rosak, semakin sukar untuk buah pinggang ini menyingkirkan asid urik dari tubuh. Inilah sebabnya saya menghalang sebarang penggunaan ubat pain killer dan ubat bengkak dalam menangani gout.

Sekarang marilah kita berbincang bagaimana untuk merawat penyakit gout ini menurut kaedah tradisional dan sebahagian besarnya diwariskan oleh arwah guru saya. Mudah-mudahan Allah sentiasa merahmatinya. Dalam proses kita ingin merawat masalah gout ini, terlebih dahulu kita perlu mengetahui punca masalah gout ini. Sebagaimana disebutkan di atas, gout adalah disebabkan kegagalan fungsi buah pinggang menyingkirkan asid urik dan pengambilan makan yang banyak menghasilkan asid urik.

Apakah sebabnya buah pinggang bermasalah sehingga tidak lagi mampu menyingkirkan asid urik dari tubuh? Itulah yang beberapa kali diberitahu oleh mantan Menteri kesihatan Dr Chua Soi Lek bahawa mee kuning yang mengandungi asid borik dan makanan segera serta makanan rapu merosakkan buah pinggang.

Bagi menjaga kesihatan buah pinggang kita sila laksanakan amalan berikut semoga dijauhi Allah dari gout::

1. Minuman yang diambil hendaklah melebihi 2L sehari. Orang banyak bekerja kuat dan berpeluh perlu mengambil air yang lebih lagi. Masaalah kurang minum ini lebih parah di kalangan orang Melayu.

2. Elakkan kacang tanah, kacang putih dan segala kacang bergaram

3. Elakkan segala macam buah-buahan jeruk kering seperti asam boi, buah kana, dll

4. Elakkan segala macam buah-buahan jeruk basah seperti mangga jeruk, ceremai dan anggur jeruk.

5. Elakkan memakan mi segera seperti mi maggi dsb

6. Elakkan memakan makanan rapu seperti twisties, chikadess, o ring dsb

7. Elakkan memakan mi kuning dan roti canai. (Gantikan mi kuning dengan spageti dan roti canai dengan capati dan tosei). Segala produk yang menggunakan tepung putih juga perlu dielakkan seperti roti dan pizza. Bacalah artikel saya berkenaan tepung putih di sini.

8. Elakkan Nescafe, air sunquick, oren squash dan segala minuman berperisa kerana kandungan utama minuman ini ialah bahan kimia, pewarna dan perisa.

9. Elakkan minum teh kedai kerana teh kedai adalah teh recycle yang semata-mata dibuat dari bahan kimia pewarna dan perisa.

10. Elakkan chokelat dan minimakan air milo. Gantikan Milo dengan horlick.

11. Elakkan mengambil sebarang air minuman bergas.

12. Elakkan mengambil jambu batu atau jus jambu batu

13. Kurangkan atau minimakan pengambilan durian, rambutan, ciku, mangga siam, mata kucing siam dan longan. (Makan ala kadar sahaja)

14. Elakkan tembikai dan tembikai susu

15. Kurangkan pengambilan kerang, ketam, udang dan sotong. Makan sedikit sahaja dan jangan kerap mengambilnya.

16. Kurangkan mengambil ayam daging kerana mengandungi beta agonist dan pelbagai hormon penggemuk. Ayam ini dibesarkan diladang cuma 31 hari sahaja akibat diberikan ubat-ubatan ini. Cuba gantikan dengan ayam kampung atau ayam yang dijual dipasar yang kulitnya berwarna kuning. Ayam ini tidak mengandungi ubat-ubatan terlarang.

17. Bila makan daging, pilih daging tanpa lemak (tendon). Bila makan ayam (kampung) pilih makan bahagian dada dan elakkan bahagian banyak tendon seperti wing (kepak) dan peha.

18. Elakkan makan buah oren seperti oren sunkist, air limau seperti air teh O limau.

19. Elakkan makan cendawan dan produk cendawan termasuk ubat ganoderma

20. Elakkan makan ikan berbisa seperti ikan semilang dan ikan pari.

21. Elakkan makan organ dalaman seperti hempedal, hati, jantung dan tidak ketinggalan telur ikan.

22. Kurangkan makan makanan kari seperti kari ikan dan daging.

23. Elakkan sayur kacang buncis, bayam, petola dan bunga kubis

24. Elakkan berlari dan melompat (gantikan dengan berjalan) bagi yang sudah mengalami gout

25. Elakkan berurut terutamanya di bahagian pinggang

26. Kurangkan atau elakkan pulut, keladi, keledek, kentang dan ubi.

27. Elakkan jering, petai dan kerdas

28. Kurangkan pengambilan minyak kelapa sawit.

29. Elakkan menonton bahan pornografi

30. Elakkan menaiki motorsikal dengan kedudukan kaki ke hadapan seperti menaiki motorsikal Jaguh.

31. Elakkan sebarang uabat-ubatan seperti pain killer dsb

32. Elakkan mengambil sebarang supplement seperti multivitamin dsb

33. Kurangkan atau elakkan tepung putih (tepung gandum) serta makanan yang dibuat daripadanya termasuk roti putih. Tepung ata yang digunakan membuat capati adalah baik. Saya masih belum pasti apakah kandungan sebenarnya tepung putih ini yang merosakkan buah pinggang, apakah bahan kimia Benzoyl Peroxide didalamnya yang digunakan untuk memutihkan tepung ini atau kandungan campuran lain dalam tepung ini.

34. Elakkan Ikan masin jeruk seperti ikan tenggiri

35. Elakkan sayuran jeruk

36. Elakkan makanan dalam tin seperti sardin dan buah-buahan bertin

37. Elakkan telur masin

38. Elakkan cuka makanan tiruan (usahakan cuka makan asli dari apel hijau)

39. Elakkan makanan segera (Fast food) seperti KFC, Mc Donald, burger, sosej, naget dsb- Amerika adalah negara terhebat di dunia dengan fast food diikuti dengan Hong Kong, Australia dan England. Amerika juga adalah negara terhebat dengan penyakit berkaitan buah pinggang diikuti oleh Hong Kong, Australia dan England (www.shenbing.org/shenbingzhishi/zixun04.asp)

40. Elakkan terjatuh dan berurut di bahagian pinggang.

41. Elakkan menahan terlalu lama daripada membuang air kecil (tahan kencing)

42. Kurangkan makanan bersantan

43. Kurangkan makanan yang mengandungi bahan pewarna, perasa dan pengawet tiruan dan termasuk ajinomoto

Makanan atau amalan yang perlu diamalkan selalu pula ialah:

1. Minum air masak / suam dengan banyak terutama sekali bila masuk tidur. Lebih elok lagi sampai perlu bangun tidur pukul 3 pagi kerana perlu kencing

2. Amalkan minum teh misai kucing 2 uncang sehari.

3. Makan peria dan peria katak

4. Sawi pahit, kacang botor, kacang panjang, kailan

5. Susu tepung (bukan anelene, HL atau low fat)

6. Minyak zaitun. Satu sudu besar sehari adalah amalan yang disarankan

7. Ulam seperti ulam raja, pucuk gajus, pegaga dsb

8.Buah Delima

9. Epal hijau 2 biji seminggu

10. Burung seperti burung puyuh dan merpati

11. Daging itik, rusa, pelanduk, napuh, landak, arnab dan sebagainya

12. Garam kasar menggantikan garam halus

13. Berendam dalam air panas pada paras pinggang selama 20 minit selepas minum segelas air suam (dalam besen atau pun tab mandi) atau SPA.

14. Makan lebih banyak sayur-sayuran

15. Makan kapsul HABBATUSSAUDA

16. Minum air kelapa dara 1 sudu besar sehari atau 2 kali sehari. Sekiranya sudah mengambil minyak zaitun, tidak perlulah lagi mengambil minyak kelapa dara ini. Sekiranya sudah mengambil minyak kelapa dara, tidak perlulah lagi mengambil minyak zaitun.

Sebenarnya penyakit gout ini adalah rahmat dari Ilahi. Orang yang sihat memanjang sampai tua selalunya susah untuk mengingati Allah. Penyakit ini mudah-mudahan menjadi kafarah untuk menebus segala dosa-dosa lalu seperti dijanjikan Allah. Gout macam rambut yang bertukar menjadi putih sebagai amaran dari Allah bahawasanya kita makhluk Allah akan dipanggil mengadapNya dan masanya sudah semakin hampir

RAWATAN TRADISI BEBERAPA PENDUDUK KAMPONG [GHOUT] RADANG SENDI

1. ANDA SEMUA KENAL AKAN POKOK SETOL ..SENTUL

2.PASTIKAN POKOK SENTUL ITU ADALAH SENTUL HUTAN /KAMPONG BUKAN SENTUL SIAM ATAU KAWIN..

3.AMBIL SEDIKIT KULIT  BATANG POKOK SENTUL ITU LEBIH KURANG SAMA SAIS PISAU ANDA

4. MASUK DALAM PERIUK LEBIH BAIK PERIUK TANAH ..CAMPUR AIR AGAK SATU JAG KEMUDIAN REBUS HINGGA MENDIDIH

5. CUBA AMALKAN 2x3 HARI INSHAALLLAH BOLEH SEMBUH..SUDAH TERBUKTI